Regular and Semi-regular Permutation Groups and Their Centralizers and Normalizers II

Timothy Kohl

May 2016

Motivation:

Let K/k be separable where $\Gamma = Gal(\tilde{K}/k)$ and $\Gamma' = Gal(\tilde{K}/K)$ where \tilde{K} is the Galois closure of K/k.

Any Hopf-Galois structure on K/k corresponds to a regular subgroup $N \leq B = Perm(X)$ where X is either Γ or Γ/Γ' where $\lambda(\Gamma) \leq Norm_B(N)$.

For now we shall consder the case where $\tilde{K} = K$ and $X = \Gamma$.

If K/k is Hopf-Galois for $H = (K[N])^{\Gamma}$ then one has $n = |N| = |\Gamma| = [K : k].$

As such, there may be N from different isomorphism classes of groups of order n.

<u>Definition</u> For Γ as above and [M] an isomorphism class of group of order n, let

 $R(\Gamma) = \{N \le B \mid N \text{ regular and } \lambda(\Gamma) \le Norm_B(N)\}$ $R(\Gamma, [M]) = \{N \in R(\Gamma) \mid N \cong M\}$

And so $R(\Gamma)$ is the union of $R(\Gamma, [M])$ over all isomorphism classes of groups M of order n.

Of course, some $R(\Gamma, [M])$ may be empty.

One problem with enumerating these N is that one is 'searching' within the ambient symmetric group $B = Perm(\Gamma)$ and the other is trying to work with the normalization by the left regular representation of Γ .

A more broader view of this problem can be achieved by mentioning the following imporant fact.

<u>Theorem</u>: If N and M are regular subgroups of B = Perm(X) which are isomorphic as groups, then they are conjugate as subgroups of B.

So if one's goal is the simple enumeration of $R(\Gamma)$ then there is actually nothing special about $\lambda(\Gamma)$.

Specifically, for any $\beta \in B$

$$\lambda(\Gamma) \leq Norm_B(N) \longleftrightarrow \beta \lambda(\Gamma) \beta^{-1} \leq Norm_B(\beta N \beta^{-1})$$

That is, the number of regular N normalized by $\lambda(\Gamma)$ is the same as the number normalized by any conjugate of $\lambda(\Gamma)$. Also, what if one wants to consider the problem of looking at *all* Hopf-Galois structures on *all* Galois extensions of degree n? One can proceed as follows.

Let X be a set such that |X| = n, for simplicity we can even say $X = \{1, ..., n\}$ so that $B = Perm(X) = S_n$.

In Perm(X) pick $\Gamma_1, \ldots, \Gamma_t$ which are regular subgroups, one from each isomorphism class of groups of order n.

Define $R(\Gamma_i, [\Gamma_j])$ to be the set of those $N \leq B$ normalized by Γ_i which are isomorphic to (and therefore conjugates of) Γ_j .

So one would like to enumerate $R(\Gamma_i, [\Gamma_j])$ for all pairings $(\Gamma_i, [\Gamma_j])$.

These count the number of Hopf-Galois structures on Galois extensions K/k where $Gal(K/k) \cong \Gamma_i$ where the associated regular subgroup is of isomorphism type $[\Gamma_j]$.

The enumeration of $R(\Gamma_i, [\Gamma_j])$ is related to the enumeration of:

 $S(\Gamma_j, [\Gamma_i]) = \{N \leq Norm_B(\Gamma_j) \mid N = \beta \Gamma_i \beta^{-1} \text{ for some } \beta \in B\}$ the set of regular subgroups of $Norm_B(\Gamma_j)$ which are isomorphic (hence conjugate) to Γ_i .

The relationship between $S(\Gamma_j, [\Gamma_i])$ and $R(\Gamma_i, [\Gamma_j])$ was given by Byott (in relating regular N normalized by $\lambda(\Gamma)$ to regular embeddings of Γ into Hol(N)) and the presenter in the enumeration of the Hopf-Galois structures on cyclic extensions of degree p^n .

The following is a synthesis of these ideas.

For Γ a regular subgroup of B, define $Hol(\Gamma)$ to be $Norm_B(\Gamma)$.

Proposition If B = Perm(X) and Γ_i and Γ_j are regular subgroups of B then

 $|S(\Gamma_j, [\Gamma_i])| \cdot |Hol(\Gamma_i)| = |R(\Gamma_i, [\Gamma_j])| \cdot |Hol(\Gamma_j)|.$

The proof of this is takes advantage of the 'isomorphic' equals 'conjugate' idea so that one views both sides of this equation as the count of elements in B that conjugate one regular subgroup to another.

In particular, what we show is that

$$|\{\beta \in B \mid \beta \Gamma_i \beta^{-1} \leq Hol(\Gamma_j)\}| = |\{\alpha \in B \mid \Gamma_i \leq Hol(\alpha \Gamma_j \alpha^{-1})\}|$$

If $M \in S(\Gamma_j, [\Gamma_i])$ then $M \leq Hol(\Gamma_j)$ and $M \cong \Gamma_i$ which implies that there exists $\beta \in B$ such that $M = \beta \Gamma_i \beta^{-1}$.

And since the normalizer of the conjugate is the conjugate of the normalizer then

$$\beta \Gamma_i \beta^{-1} \leq Hol(\Gamma_i) \longleftrightarrow \Gamma_i \leq Hol(\beta^{-1} \Gamma_i \beta)$$

and so $\beta^{-1}\Gamma_{j}\beta \in R(\Gamma_{i}, [\Gamma_{j}]).$

Also, if we replace β by βh for any $h \in Hol(\Gamma_i)$ then $(\beta h)\Gamma_i(\beta h)^{-1} = \beta \Gamma_i \beta^{-1} = M$.

However, the $(\beta h)^{-1}\Gamma_i(\beta h)$ are all (not necessarily distinct) elements of $R(\Gamma_i, [\Gamma_j])$.

In parallel, any $N \in R(\Gamma_i, [\Gamma_j])$ is equal to $\alpha \Gamma_j \alpha^{-1}$ for some α and that replacing α by αk for any $k \in Hol(\Gamma_j)$ yields the same N.

Moreover $\alpha^{-1}\Gamma_i \alpha$ lies in $S(\Gamma_j, [\Gamma_i])$ and likewise $(\alpha k)^{-1}\Gamma_i(\alpha k)$.

Note that

$$\beta_1 \Gamma_i \beta_1^{-1} = \beta_2 \Gamma_i \beta_2^{-1}$$

if and only if

•

 $\beta_1 Hol(\Gamma_i) = \beta_2 Hol(\Gamma_i)$

As such we can parametrize the elements of $S(\Gamma_j, [\Gamma_i])$ by a set of distinct cosets

 $\beta_1 Hol(\Gamma_i), \ldots, \beta_s Hol(\Gamma_i)$

and $R(\Gamma_i, [\Gamma_j])$ by distinct cosets

 $\alpha_1 Hol(\Gamma_j), \ldots, \alpha_r Hol(\Gamma_j)$

The bijection we seek is:

$$\Phi : \bigcup_{k=1}^{s} \beta_k Hol(\Gamma_i) \to \bigcup_{l=1}^{r} \alpha_l Hol(\Gamma_j)$$

defined by $\Phi(\beta_k h) = (\beta_k h)^{-1}$.

That $\Phi(\beta_k h)$ lies in the union on the right hand side is due to the analysis given above, and this map is clearly bijective.

Since $Hol(\Gamma) \cong \Gamma \rtimes Aut(\Gamma)$ then we have:

Corollary 1:

 $|S(\Gamma_j, [\Gamma_i])| \cdot |Aut(\Gamma_i)| = |R(\Gamma_i, [\Gamma_j])| \cdot |Aut(\Gamma_j)|.$

and of course:

Corollary 2: For Γ a particular regular subgroup of B: $|S(\Gamma, [\Gamma])| = |R(\Gamma, [\Gamma])|$ Lastly, one should note that e_B 'paramaterizes' Γ in $S(\Gamma, [\Gamma])$ and $R(\Gamma, [\Gamma])$ since trivially $e_B \Gamma e_B^{-1} = \Gamma$.

Moreover, suppose $N \in S(\Gamma, [\Gamma]) \cap R(\Gamma, [\Gamma])$ then there is some $\beta \in B$ such that $\beta \Gamma \beta^{-1} = N$, but then $M = \beta^{-1} \Gamma \beta$ also lies in $S \cap R$.

As such, we have a set $T = \{\beta_1, \dots, \beta_k\}$ (where we may assume $\beta_1 = e_B$) such that

$$S \cap R = \{\beta_1 \Gamma \beta_1^{-1}, \dots, \beta_k \Gamma \beta_k^{-1}\}$$

where T contains the identity and is closed under inverses.

Is this set ever a group?

The answer is, sometimes.

More specifically, since β and βh determine the same conjugate of Γ for any $h \in Hol(\Gamma)$ then this set T is not unique.

However, it turns out that T can be chosen such that it *does* form a group.

What is needed minimally is that all the $N \in S \cap R$ normalize each other.

For example, if $\Gamma = C_{p^n}$ then $|S \cap R| = p^r$ where $r = \begin{bmatrix} n \\ 2 \end{bmatrix}$ and there exists (many) $T \leq B$ (all isomorphic to C_{p^r}) which parameterize $S \cap R$. Moreover, for some Γ there may be different isomorphism classes of groups, T, which parameterize $S \cap R$.

For example, if $\Gamma = D_4$ then $|S \cap R| = 6$ and there exist 32 groups isomorphic to C_6 and 32 groups isomorphic to S_3 that parmameterize $S \cap R$. Note, the parameterization of $S \cap R$ by a group is related to the idea of parameterizing the set

$$\mathcal{H}(\Gamma) = \{ N \le Hol(\Gamma) \mid N \cong \Gamma \text{ and } Norm_B(N) = Hol(\Gamma) \}$$
$$= \{ N \triangleleft Hol(\Gamma) \mid N \cong \Gamma \}$$
$$\subseteq S \cap R$$

which is in direct correspondence with $NHol(\Gamma)/Hol(\Gamma)$ where $NHol(\Gamma) = Norm_B(Hol(\Gamma))$, the so called multiple holomorph of Γ .

Indeed, the orbit of Γ under this quotient is *exactly* $\mathcal{H}(\Gamma)$, so this quotient would be embedded in any such T that parameterizes $S \cap R$.

Thank you!