Regular and Semi-regular
 Permutation Groups and Their
 Centralizers and Normalizers II

Timothy Kohl

May 2016

Motivation:

Let K / k be separable where $\Gamma=\operatorname{Gal}(\tilde{K} / k)$ and $\Gamma^{\prime}=$ $\operatorname{Gal}(\tilde{K} / K)$ where \tilde{K} is the Galois closure of K / k.

Any Hopf-Galois structure on K / k corresponds to a regular subgroup $N \leq B=\operatorname{Perm}(X)$ where X is either Γ or Γ / Γ^{\prime} where $\lambda(\Gamma) \leq \operatorname{Norm}_{B}(N)$.

For now we shall consder the case where $\tilde{K}=K$ and $X=\Gamma$.

If K / k is Hopf-Galois for $H=(K[N])^{\Gamma}$ then one has $n=|N|=|\Gamma|=[K: k]$.

As such, there may be N from different isomorphism classes of groups of order n.

Definition For Γ as above and $[M]$ an isomorphism class of group of order n, let

```
    \(R(\Gamma)=\left\{N \leq B \mid N\right.\) regular and \(\left.\lambda(\Gamma) \leq \operatorname{Norm}_{B}(N)\right\}\)
\(R(\Gamma,[M])=\{N \in R(\Gamma) \mid N \cong M\}\)
```

And so $R(\Gamma)$ is the union of $R(\Gamma,[M])$ over all isomorphism classes of groups M of order n.

Of course, some $R(\Gamma,[M])$ may be empty.

One problem with enumerating these N is that one is 'searching' within the ambient symmetric group $B=$ $\operatorname{Perm}(\Gamma)$ and the other is trying to work with the normalization by the left regular representation of Γ.

A more broader view of this problem can be achieved by mentioning the following imporant fact.

Theorem: If N and M are regular subgroups of $B=$ $\operatorname{Perm}(X)$ which are isomorphic as groups, then they are conjugate as subgroups of B.

So if one's goal is the simple enumeration of $R(\Gamma)$ then there is actually nothing special about $\lambda(\Gamma)$.

Specifically, for any $\beta \in B$

$$
\lambda(\Gamma) \leq \operatorname{Norm}_{B}(N) \longleftrightarrow \beta \lambda\left(\ulcorner) \beta^{-1} \leq \operatorname{Norm}_{B}\left(\beta N \beta^{-1}\right)\right.
$$

That is, the number of regular N normalized by $\lambda(\Gamma)$ is the same as the number normalized by any conjugate of $\lambda(\Gamma)$.

Also, what if one wants to consider the problem of looking at all Hopf-Galois structures on all Galois extensions of degree n ?

One can proceed as follows.

Let X be a set such that $|X|=n$, for simplicity we can even say $X=\{1, \ldots n\}$ so that $B=\operatorname{Perm}(X)=S_{n}$.

In $\operatorname{Perm}(X)$ pick $\Gamma_{1}, \ldots, \Gamma_{t}$ which are regular subgroups, one from each isomorphism class of groups of order n.

Define $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ to be the set of those $N \leq B$ normalized by Γ_{i} which are isomorphic to (and therefore conjugates of) Γ_{j}.

So one would like to enumerate $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ for all pairings ($\Gamma_{i},\left[\Gamma_{j}\right]$).

These count the number of Hopf-Galois structures on Galois extensions K / k where $\operatorname{Gal}(K / k) \cong \Gamma_{i}$ where the associated regular subgroup is of isomorphism type $\left[\Gamma_{j}\right]$.

The enumeration of $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ is related to the enumeration of:
$S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)=\left\{N \leq \operatorname{Norm}_{B}\left(\Gamma_{j}\right) \mid N=\beta \Gamma_{i} \beta^{-1}\right.$ for some $\left.\beta \in B\right\}$
the set of regular subgroups of $\operatorname{Norm}_{B}\left(\Gamma_{j}\right)$ which are isomorphic (hence conjugate) to Γ_{i}.

The relationship between $S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)$ and $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ was given by Byott (in relating regular N normalized by $\lambda(\Gamma)$ to regular embeddings of Γ into $\operatorname{Hol}(N)$) and the presenter in the enumeration of the Hopf-Galois structures on cyclic extensions of degree p^{n}.

The following is a synthesis of these ideas.

For Γ a regular subgroup of B, define $\operatorname{Hol}(\Gamma)$ to be $\operatorname{Norm}_{B}(\Gamma)$.

Proposition If $B=\operatorname{Perm}(X)$ and Γ_{i} and Γ_{j} are regular subgroups of B then

$$
\left|S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)\right| \cdot\left|\operatorname{Hol}\left(\Gamma_{i}\right)\right|=\left|R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)\right| \cdot\left|\operatorname{Hol}\left(\Gamma_{j}\right)\right|
$$

The proof of this is takes advantage of the 'isomorphic' equals 'conjugate' idea so that one views both sides of this equation as the count of elements in B that conjugate one regular subgroup to another.

In particular, what we show is that
$\left|\left\{\beta \in B \mid \beta \Gamma_{i} \beta^{-1} \leq \operatorname{Hol}\left(\Gamma_{j}\right)\right\}\right|=\left|\left\{\alpha \in B \mid \Gamma_{i} \leq \operatorname{Hol}\left(\alpha \Gamma_{j} \alpha^{-1}\right)\right\}\right|$

If $M \in S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)$ then $M \leq \operatorname{Hol}\left(\Gamma_{j}\right)$ and $M \cong \Gamma_{i}$ which implies that there exists $\beta \in B$ such that $M=\beta \Gamma_{i} \beta^{-1}$.

And since the normalizer of the conjugate is the conjugate of the normalizer then

$$
\begin{aligned}
& \quad \beta \Gamma_{i} \beta^{-1} \leq \operatorname{Hol}\left(\Gamma_{j}\right) \longleftrightarrow \Gamma_{i} \leq \operatorname{Hol}\left(\beta^{-1} \Gamma_{j} \beta\right) \\
& \text { and so } \beta^{-1} \Gamma_{j} \beta \in R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)
\end{aligned}
$$

Also, if we replace β by βh for any $h \in \operatorname{Hol}\left(\Gamma_{i}\right)$ then $(\beta h) \Gamma_{i}(\beta h)^{-1}=\beta \Gamma_{i} \beta^{-1}=M$.

However, the $(\beta h)^{-1} \Gamma_{i}(\beta h)$ are all (not necessarily distinct) elements of $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$.

In parallel, any $N \in R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ is equal to $\alpha \Gamma_{j} \alpha^{-1}$ for some α and that replacing α by αk for any $k \in \operatorname{Hol}\left(\Gamma_{j}\right)$ yields the same N.

Moreover $\alpha^{-1} \Gamma_{i} \alpha$ lies in $S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)$ and likewise $(\alpha k)^{-1} \Gamma_{i}(\alpha k)$.

Note that

$$
\beta_{1} \Gamma_{i} \beta_{1}^{-1}=\beta_{2} \Gamma_{i} \beta_{2}^{-1}
$$

if and only if

$$
\beta_{1} \operatorname{Hol}\left(\Gamma_{i}\right)=\beta_{2} \operatorname{Hol}\left(\Gamma_{i}\right)
$$

As such we can parametrize the elements of $S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)$ by a set of distinct cosets

$$
\beta_{1} \operatorname{Hol}\left(\Gamma_{i}\right), \ldots, \beta_{s} \operatorname{Hol}\left(\Gamma_{i}\right)
$$

and $R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)$ by distinct cosets

$$
\alpha_{1} \operatorname{Hol}\left(\Gamma_{j}\right), \ldots, \alpha_{r} \operatorname{Hol}\left(\Gamma_{j}\right)
$$

The bijection we seek is:

$$
\begin{aligned}
& \qquad \Phi: \bigcup_{k=1}^{s} \beta_{k} \operatorname{Hol}\left(\Gamma_{i}\right) \rightarrow \bigcup_{l=1}^{r} \alpha_{l} \operatorname{Hol}\left(\Gamma_{j}\right) \\
& \text { defined by } \Phi\left(\beta_{k} h\right)=\left(\beta_{k} h\right)^{-1} .
\end{aligned}
$$

That $\Phi\left(\beta_{k} h\right)$ lies in the union on the right hand side is due to the analysis given above, and this map is clearly bijective.

Since $\operatorname{Hol}(\Gamma) \cong \Gamma \rtimes \operatorname{Aut}(\Gamma)$ then we have:

Corollary 1:

$$
\left|S\left(\Gamma_{j},\left[\Gamma_{i}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(\Gamma_{i}\right)\right|=\left|R\left(\Gamma_{i},\left[\Gamma_{j}\right]\right)\right| \cdot\left|\operatorname{Aut}\left(\Gamma_{j}\right)\right| .
$$

and of course:
Corollary 2: For Γ a particular regular subgroup of B :

$$
\mid S(\ulcorner,[\ulcorner])|=| R(\ulcorner,[\ulcorner]) \mid
$$

Lastly, one should note that e_{B} 'paramaterizes' Γ in $S(\Gamma,[\Gamma])$ and $R(\Gamma,[\Gamma])$ since trivially $e_{B}\left\ulcorner e_{B}^{-1}=\Gamma\right.$.

Moreover, suppose $N \in S(\Gamma,[\Gamma]) \cap R(\Gamma,[\Gamma])$ then there is some $\beta \in B$ such that $\beta \Gamma \beta^{-1}=N$, but then $M=\beta^{-1} \Gamma \beta$ also lies in $S \cap R$.

As such, we have a set $T=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ (where we may assume $\beta_{1}=e_{B}$) such that

$$
S \cap R=\left\{\beta _ { 1 } \left\ulcorner\beta_{1}^{-1}, \ldots, \beta_{k}\left\ulcorner\beta_{k}^{-1}\right\}\right.\right.
$$

where T contains the identity and is closed under inverses.

Is this set ever a group?

The answer is, sometimes.

More specifically, since β and βh determine the same conjugate of Γ for any $h \in \operatorname{Hol}(\Gamma)$ then this set T is not unique.

However, it turns out that T can be chosen such that it does form a group.

What is needed minimally is that all the $N \in S \cap R$ normalize each other.

For example, if $\Gamma=C_{p^{n}}$ then $|S \cap R|=p^{r}$ where $r=\left[\frac{n}{2}\right]$ and there exists (many) $T \leq B$ (all isomorphic to $C_{p^{r}}$) which parameterize $S \cap R$.

Moreover, for some Γ there may be different isomorphism classes of groups, T, which parameterize $S \cap R$.

For example, if $\Gamma=D_{4}$ then $|S \cap R|=6$ and there exist 32 groups isomorphic to C_{6} and 32 groups isomorphic to S_{3} that parmameterize $S \cap R$.

Note, the parameterization of $S \cap R$ by a group is related to the idea of parameterizing the set

$$
\begin{aligned}
\mathcal{H}(\Gamma) & =\left\{N \leq \operatorname{Hol}(\Gamma) \mid N \cong \Gamma \text { and } \operatorname{Norm}_{B}(N)=\operatorname{Hol}(\Gamma)\right\} \\
& =\{N \triangleleft \operatorname{Hol}(\Gamma) \mid N \cong \Gamma\} \\
& \subseteq S \cap R
\end{aligned}
$$

which is in direct correspondence with $\mathrm{NHol}(\Gamma) / \mathrm{Hol}(\Gamma)$ where $\operatorname{NHol}(\Gamma)=\operatorname{Norm}_{B}(\operatorname{Hol}(\Gamma))$, the so called multiple holomorph of Γ.

Indeed, the orbit of Γ under this quotient is exactly $\mathcal{H}(\Gamma)$, so this quotient would be embedded in any such T that parameterizes $S \cap R$.

Thank you!

